Overexpression of a Shaker-type potassium channel in mammalian central nervous system dysregulates native potassium channel gene expression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of a Shaker-type potassium channel in mammalian central nervous system dysregulates native potassium channel gene expression.

The nervous system maintains a delicate balance between excitation and inhibition, partly through the complex interplay between voltage-gated sodium and potassium ion channels. Because K+ channel blockade or gene deletion causes hyperexcitability, it is generally assumed that increases in K+ channel gene expression should reduce neuronal network excitability. We have tested this hypothesis by c...

متن کامل

Primary sensory neurons express a Shaker-like potassium channel gene.

Developmentally regulated action potentials are a hallmark of Rohon-Beard cells, a class of sensory neurons. In these neurons as well as other primary spinal neurons of Xenopus laevis, the functional differentiation of delayed-rectifier potassium current regulates the waveform of the action potential during the initial day of its appearance. Later, the acquisition of another voltage-dependent p...

متن کامل

Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila.

The Shaker locus of Drosophila contains a very large transcription unit. It is expressed predominantly in the nervous system by multiple, differential as well as alternative, splicing mechanisms into different, but functionally related proteins. The structure of the Shaker transcription unit and the properties of the encoded Shaker protein family provide a molecular basis for A channel diversit...

متن کامل

Functional stoichiometry of Shaker potassium channel inactivation.

Shaker potassium channels from Drosophila are composed of four identical subunits. The contribution of a single subunit to the inactivation gating transition was investigated. Channels carrying a specific mutation in a single subunit can be labeled in a heterogeneous population and studied quantitatively with scorpion toxin sensitivity as a selection tag. Linkage within a single subunit of a mu...

متن کامل

Agitoxin Footprinting the Shaker Potassium Channel Pore

In voltage-dependent K+ channels, each of the four identical subunits contributes one pore loop to the central ion selectivity unit at the interface between the subunits. The pore loop is also the target for scorpion venom peptide inhibitors. These inhibitors bind at the pore entryway between the four subunits and can assume any one of four orientations. The orientations become distinguishable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1999

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.96.5.2451